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A FORMULA FOR THE RADIAL PART OF THE
LAPLACE-BELTRAMI OPERATOR

SIGURDUR HELGASON

Let V be a manifold and H a Lie transformation group of V. Suppose
Du = 0 is a differential equation on V, both the differential operator D and
the function « assumed invariant under H. Then the differential equation will
involve several inessential variables, a fact which may render general results
about differential operators rather ineffective for the differential equation at
hand. Thus although D may not be an elliptic operator it might become one
after the inessential variables are eliminated (cf. [3, p. 99D).

This viewpoint leads to the general definition (cf. [7]) of the transversal part
and radial part of a differential operator on V given in §§ 2 and 3. The radial
part has been constructed for many special differential operators in the litera-
ture; see for example [1], [3], [4], [5], [8] for Lie groups, Lie algebras and
symmetric spaces, [9], [6] for some Lorentzian manifolds. Our main result,
formula (3.3) in Theorem 3.2, includes various known examples worked out by
computations suited for each individual case. See Harish-Chandra [4, p. 99]
for the Laplacian on a semisimple Lie algebra, Berezin [1] and Harish-Chandra
{3, § 8] for the Laplacian on a semisimple Lie group, and Harish-Chandra
[5, § 71 and Karpelevi¢ [8, § 15] for the Laplacian on a symmetric space. The
author is indebted to J. Lepowsky for useful critical remarks.

Notation. If V is a manifold and v ¢ V, then the tangent space to V at »
will be denoted V,; the differential of a differentiable mapping ¢ of one mani-
fold into another is denoted dp. We shall use Schwartz’ notation &(V) (resp.
2(V)) for the space of complex-valued C~ functions (resp. C* functions of
compact support) on V. Composition of differential operators D,, D, is denoted
D,oD,.

2. The transversal part of a differential operator

Let V be a manifold satisfying the second axiom of countability, and H a
Lie transformation group of V. lf he H, v ¢ V, let h-v denote the image of v
under H and let H® denote the isotropy subgroup of H at v. Let §j denote the
Lie algebra of H. If X ¢ §j, let X* denote the vector field on V induced by X,
ie.,
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21 XPH) = ,..‘%.f(exptx.v) . fea(V), weV.
t=0

A C= function f on an open subset of V' is said to be locally invariant if
X*f=0:

Lemma 2.1. Suppose W C V is a submanifold such that for each we W
the tangent spaces at w satisfy the condition:

2.2) Vo =W, + (H-w), (direct sum).

Let w,e W. Then there exists an open relatively compact neighborhood W, of
w, in W and a relatively compact submanifold B C H,e e B such that the
natural projection =: H — H/H™ is a diffeomorphism of B onto an open
neighborhood U, of n(e) in H|H" and such that the mapping 5: (b,w) — b-w
is a diffeomorphism of B X W, onto an open neighborhood V, of w, in V.
Proof. Let §° denote the Lie algebra of H*°, and n C } any subspace com-
plementary to §°, Then the mapping o: (X, w) —expX-wof n X Winto V is
regular at (0, w,). In fact, since (dy), ., fixes W,,,, it suffices to prove

(2.3) (d9) 0y X 0) = (H W)y, .

This however is clear from dimensionality considerations. Now the lemma
follows from the standard fact that if n, is a sufficiently small neighborhood of
0 in n, then exp is a diffeomorphism of n, onto a submanifold B C H diffeo-
morphic under = to an open neighborhood of w, in H/H"»,

It was pointed out to me by R. Palais that the local integration of involutive
distributions (Chevalley [3, p. 89]) shows that a submanifold W satisfying (2.2)
always exists.

Now let us assume that V' has a Riemannian structure g invariant under the
action of H. Assuming furthermore that all the orbits. of H have the same
dimension, we shall with each differential operator D on V associate a new
differential operator D, on V which acts “transversally to the orbits”.

Fix s, € V and let § denote the orbit H.s,. For each s¢ § consider the geo-
desics in V starting at s, perpendicular to S. If we take sufficiently short pieces
of these geodesics, their union is a submanifold Si- of V. Shrinking S if neces-
sary we may assume that it satisfies transversality condition (2.2) for W. Take
w, as s,, and let W, B and ¥, be as in the lemma. For fe (V) (or even for
functions defined on V) we define a new function f,, on V, by

fs(b-w) =f(w), beB, weW,.
We then define D, by

(2.4 DrH(s,) = (Dfso)(so) s se V.
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Since B-w is a neighborhood of w in the orbit H-w, and since D decreases
supports, the choice of B above is immaterial, and (2.4) is indeed a valid defini
tion; the operator D, decreases supports and is therefore a differential
operator, which we call the transversal part of D.

Theorem 2.2. Let V be a Riemannian manifold, H a Lie transformation
group of isometries of V, all orbits assumed to have the same dimension. Let
S be any H-orbit and let f denote restriction of a function { to S. Then the
Laplace-Beltrami operators L = L, and L on V and 8, respectively, satisfy

(2.5) (L)~ = Lg¢f + (Lof)” fee).
Proof. Let (y,, ---,y,) be any coordinate system on B such that y(e) =
... = y(e) =0, and let w — (z,,.,(W), - - -, z,(w)) be a coordinate system on

W, such that the geodesics forming S;; correspond to the straight lines through
0. Then we define a coordinate system (x,, - - -, x,) on V, by

e, (b-w), - x.(b-w),x, (bW, -+ -, x,(b-W))
= (yl(b), c '5y'r(b)7 Z'r+1(w), vt ':Zn(w)) .

The Laplace-Beltrami operator is given by

L = Zlgpq(apq - ; F;qaz) ’

pq=

where 9, = 8/0x,, 9, = 0°/0x,0x,, g is the inverse of the matrix g,, =
&(8,,9,), and I"; is the Christoffel symbol

Iy =% Zs] 87(3,8ps + 09845 — 0,85 -
Suppose € £(V,) satisfies the condition
(2.6) V(X e %) =0, 04,0, x5, 00, X)),
or equivalently

v(b-w)=+(w), beB, weW,.
Then
2.7 Y=y, (Lp)(se) = (Lpy)(sy)
On the other hand, suppose ¢ ¢ (V) satisfies
2.8) olx, -, x,) = olxg, -+, %,,0,---,0),

or equivalently
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ob-w) =o(b-s)), beB, weW,.

Fof each set of reai numbers a,,, - - -, a,, not all 0, the curve
t— (x,(5), + -+, X,(80), Aok, -+ -, ALE)
is a geodesic in V. The differential equation for geodesics
B4 DT %p%, =0
P
(dot denoting differentiation with respect to #) therefore shows that
Iigfs) =0, 1<i<n, r+l1<ap<n.
Since the geodesic is perpendicular to S at s,,
2.9 g lsp)=g"() =0, for 1<i<r, r+l1<a<n.
it follows that
Lo)s) = 31 89040 -, SZkIST I't0,0)(s0) -

1<, j<r

But by (2.9), I'%,(s,) is the same for § and for V, so
(2.10) Lp)(sy) = (Lsp)(sv) -
But
L(gy) = oL + 2g (grad ¢, grad ¥) + yLg ,
where for any f e &(V,),
gradf = 3 g*%9,D09, .

¢

Hence (2.9) implies
(2.1 L{gV)(s0) = @(s) (LA (se) + ¥(s)(Le)(s,) -
But ¢,, is a constant function, so by (2.4) and (2.7)
PeLA)(s0) = L(@y))(s0) = (Lr))(sy) -
Similarly, since v is a constant function, (2.10) implies
Y(s)(Lp)(sy) = Ls(@V)(so) -

This gives formula (2.5) for the function f = ¢y, and since the linear com-
binations of such products form a dense subspace of 2(V,) the theorem follows
by approximation.
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Remark. The theorem remains true with the same proof if V' is a mani-
fold with a pseudo-Riemannian structure g provided g is nonsingular on §.

3. The radial part of a differential operator

Again let ¥V be a manifold satisfying the second axiom of countability, and
H a Lie transformation group of V. Suppose W C V is a submanifold satisfy-
ing transversality condition (2.2) in Lemma 2.1.

Lemma 3.1. Let D be a differential operator on V. Then there exists a
unique differential operator A(D) on W such that

(3.1) (D)~ = AD)f

for each locally invariant function f on an open subset of V, the bar denoting
restriction to W.

Proof. Let w,e W and select W,, B and V, as in Lemma 2.1. If p € £(W,),
we define f on V, by

f(b-w) =ow), beB, weW,.

The mapping ¢ — (Df)~ gives an operator D, w, z of &(W,) into itself. It is
now an easy matter to verify that the linear transformation 4(D) given by

(ADIIWe) = (Do, o, 59)(Wo)

is a well-defined differential operator on &(W), with the properties stated in
the lemma.

The operator 4(D) is called the radial part of D. We shall now give a formula
for the radial part of the Laplace-Beltrami operator on V under a strengthen-
ing of transversality assumption (2.2); in fact we assume that each H-orbit
intersects W just once and orthogonally.

Theorem 3.2. Suppose V is a Riemannian manifold, H a closed unimodular
subgroup of the Lie group of all isometries of V (with the compact open
topology). Let W C V be a submanifold satisfying the condition: For each
welW,

(3.2) HwNW=wW,V,=Hw,®W,,

where @ denotes orthogonal direct sum. Let L, and Ly, denote the Laplace-
Beltrami operators on V and W, respectively. Then

3.3 MLy) = 073y 08t — 372, (YD) ,

where the function 0 is the volume element ratio in (3.8) below.

Proof. Let V* denote the subset H-W of V. Since the mapping (4, w) —
h-wof H x W into V has (by (3.2)) a surjective differential at each point, V*
is an open subset of V. Since H is closed, the isotropy subgroup H¥ at each
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point w € W is compact and the orbit H-w is closed; if we fix a left invariant
Haar measure on H and a Haar measure on H* (with total measure 1), we
obtain in a standard way an H-invariant measure d# on each orbit H.-w =
H/H®*. Denoting by dv and dw the Riemannian measures on V and W, respec-
tively, we shall prove that there exists a function 8 € &(W) such that

(3.4) f F(v)dy = f 5(w) ( F(h-w)diz)dw, Fea(V®) .

Let w,e W. Because of the second part of (3.2) there exist a coordinate
neighborhood W, of w, in W, a vector subspace nt C ) of dimension dim V' —
dim W and a neighborhood m, of O in m such that the map

7: (X, w) >expX.w

is a diffeomorphism of m, X W, onto an open neighborhood V, of w, in V.
Let (x,, - - -, x,) be a Cartesian coordinate system on mt, and (x,,,, - -+, X,) an
arbitrary coordinate system on W,. In the formulas below let 1 <i,j <r,r +
1 < a, 8 < n. Let the coordinate system (x;, - - -, x,) on V, be determined by

x; (exp X -w) = x,(X) , x, (exp X-w) = x,(w) .

Let g denote the Riemannian structure of V, and put g,, = g(9,,9,) as usual,
so that

dv = gidx,. . -dx, , dw = 7dx, - - -dx, ,
where
(3.5) g = |det (8pi<p,a<n)| > 7 = |det (g.)] .
Because of the orthogonality in (3.2) we have
(3.6) g:i.w) =0, weW,.

But if # = exp X (X e m,) then our choice of coordinates implies for the dif-
ferential dh,

b G @)= Bl
dh(ax)w_ (ax,, ew 0xX;}w J'Z=:1 H axj how

where a;;¢ R. Hence g,,(h-w) = g,(w) and using (6), 8. (h-w) = 0;
consequently

(3.7 g(h-w) = det (g;)(h-w)7(w) .

However
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|{det (g )}e(h-w)|dx, - -dx,(h-w)

is just the Riemannian volume element ds, on the orbit H-w. Thus, if
F ¢ &(V,) we obtain from the Fubini theorem and (3.7) that

J F(v)dv = J Z(w) ( ;L F(p)daw(p)) dx,, - dx, (W) .

But do,, is invariant under H, so it must be a scalar multiple of dh,
(3.8) de,, = d(w)dh .

This proves (3.4) for all F e 2(V,); then it holds also if F has support inside
h.V, for some h ¢ H. But as w, runs through W, the sets 4.V, form a covering
of V*. Passing to a locally finite refinement and a corresponding partition of
unity, (3.4) follows for all F e 2(V*).

Let F(w) denote the inner integral in (3.4), so that

(3.9) F(w) = f Flh-wdh .

It is a routine matter to verify that the mapping F — F is surjective, i.e.,
(3.10) 2(V*) = g(W) .

For the determination of 4(L,) we first observe that

(3.1 A(L,) = Ly + lower order terms.

This is clear from the coordinate expression for L, together with (3.6) if we
also note that the vector fields 3/dx; are tangential to the H-orbits. Next we
recall that L, is symmetric with respect to dv, i.e.,

(3.12) f(val)(v) hHv)dv = ffl(v)(vaz)(v)dv

for all f,, f, ¢ 2(V*). But then this relation holds for all f, ¢ &(V'*). In particular
we can use it on f, invariant under H. Applying (3.4) to the left hand side of
(3.12) we obtain

(3.13) f SWE,(w) ( f (L,$) (h-w)diz) dw .

W

But for each v ¢ V the isotropy subgroup H® is compact, so by invariance of L,

(L), ( f fi(h-v) dh) - f L)k v)dh .
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Now  putting here ¥ =w we get the inner integral in (3.13) equal to
(A(Ly)f)(w); thus the left hand side of (3.12) is

f (UL )W) Fw)s(w)dw |

w

the bar denoting restriction to W. But using the H-invariance of L,f,, formula
(3.4) and the definition of radial part, the right hand side of (3.12) reduces to

f AT T W)3w)dw .

But in view of (3.10) the functions f, (and of course the f;) fill up 2(W), so
the equality of the two last expressions implies that A(L,) is symmetric with
respect to §(w)dw. Now since Ly, is symmetric with respect to dw, a simple
computation shows that the composition §~iLy, o 8¢ is symmetric with respect
to 6(w)dw and it clearly agrees with Ly up to lower order terms. Thus by
(3.11) the symmetric operators A(L,) and §7*L, o % agree up to an operator
of order < 1. But this operator, being symmetric, must be a function, and
now (3.3) follows by applying the operators to the function 1.

It is of interest to generalize Theorem 3.2 to pseudo-Riemannian manifolds
V. If V has a pseudo-Riemannian structure g, which for each we W is non-
degenerate on the closed orbit H-w, and if each H* (w e W) is compact, then
Theorem 3.2 remains valid. In fact, the isotropy group H? is then compact for
each v ¢ V*, so no change is necessary in the proof.

When a semisimple Lie group H acts on its Lie algebra by the adjoint
representation, the regular elements of a Cartan subalgebra constitute a trans-
versal submanifold W where the isotropy subgroup H* is the same for all
w e W. This then provides an example for the following variation of Theorem
3.2. :
Theorem 3.3. Let the assumptions be as in Theorem 3.2 except that V has
only a pseudo-Riemannian structure g. Then formula (3.3) remains valid if we
further assume that

(i) for each we W the orbit H-w is closed and g is non-degenerate on it,

(ii) HY is the same for all we W, and its Lie algebra is its own normalizer
in the Lie algebra of H. ‘ .

Proof. Put H* = H* (we W) and i =hH", and fix an H-invariant measure
dh on the coset space H/H". Such a measure exists since each orbit H-w has
an H-invariant measure de¢,, defined as above. If y is a geodesic in V' tangential
to W at w then 7 is left fixed by each 4 e H,. Thus (ii) implies y C W so W is
a totally geodesic submanifold of V. Defining ¢ by (3.8) the only part of the
proof above which requires change is the justification of the formula

(3.14) f (Lot )h-w)dh = (AL, )W) .
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For this we use Theorem 2.2 and the subsequent remark to split L, into its
“orbital part” and transversal part. The orbital part gives integral 0 over H-w,
so in the integral (3.14) we can replace L, by its transversal part L ,. Putting
fAw) = f,(h-w) for 1 ¢ H, we have, by the H-invariance of L, r,

(Ly,rf)(h-w) = (Ly,r(f)W) ,

which, by the definition of transversal part and radial part, equals ALHFH(w),
W being totally geodesic. But then the left hand side of (3.14) equals

f AL h-w)dh

H/HO

which equals (4(Ly) f J(w) because now h and w are independent variables.
This proves (3.14) and therefore also Theorem 3.3.
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